Bryozoans as an estuarine rafting habitat for mobile benthic invertebrates and young finfish in the north-central Gulf of Mexico

E. JOHN ANDERSON¹, MARK S. PETERSON², AND MICHAEL J. ANDRES²

INTRODUCTION

• Bryozoans are sessile suspension-feeders, with some species being considered ephemeral habitats once broken free from the benthos
• Ephemeral habitats provide organisms within a landscape additional foraging sites and predator refuge indicating bryozoan mats could be a valuable, temporary habitat type for small, mobile species or early life stages (Rey and Stoner 1994)
• There are relatively few studies describing fauna associated with ephemeral habitats in estuarine systems and especially so for bryozoans (Pederson and Peterson, 2002; Wood et al. 2012)
• Our study aims to determine if the presence of bryozoans in nearshore waters of the north-central GOM will provide additional temporally- and spatially-ephemeral habitat for early life-stages of ecologically, commercially, or recreationally important invertebrates and fishes

MATERIALS AND METHODS

• 7.5 m seine and 4.9 m flat otter trawl was used at fixed and random sites from 2012-2017 to collect samples (Fig. 1)
• Samples with bryozoans generally occurred Sep-Nov (Fig. 2); all analyses focused on data during those months
• Bryozoan species were identified, measured volumetrically to nearest 0.1 L, and categorized into four groups (0.01-1.0, 1.1-10.0, and >10.0 L)
• All other organisms were identified to species level and we calculated species richness (SR) and Shannon Diversity (SD) for each sample
• Samples were categorized as bryozoan present/absent and compared by gear, month, and habitat type for trawl samples (in channel or out channel)
• We used Kruskal-Wallis tests and pairwise Mann Whitney U-tests determine differences in SR and SD between groups

RESULTS

• Amanthia verticillata was the only bryozoan collected in seines whereas A. verticillata dominated all trawl collections but also with lesser amounts of A. convoluta and Bugula neritina
• Overall we collected: 71 invertebrate taxa in seines and 86 species in trawls, with 39 taxa in common, and 87 vertebrate taxa in seines overall and 74 species in trawls, with 54 taxa in common

Bryozoan volume-diversity relationships

• Species richness for the pooled trawl data was significantly different among bryozoan volumes in November when most bryozoans were collected; SR at bryozoan volume 1 was significantly greater than when bryozoans were not collected (volume = 0) (Fig. 3A)
• Species richness for the pooled seine data was significantly different among bryozoan volumes in November; collections from bryozoan volume 2 were significantly greater than without bryozoan and volume 3 collections were significantly greater than without bryozoan (Fig. 3B)

Pooled-level patterns

• There was a gradual decrease in bryozoan volume during the study period with a peak occurring in September 2013 in trawls and November 2014 in seines, with subsequent reductions in volume thereafter over the course of the study period (Fig. 2)
• Species richness for pooled trawl data was only significantly different among fall months when bryozoans were not collected with collections in November being lower than September and October (Fig. 4A)
• Species diversity between fall collections for pooled trawl data with and without bryozoan’s present were not significantly different (Fig. 4B)
• Species richness for pooled seine data was not significantly different among fall months when bryozoans were not collected (Fig. 5A), but SD for pooled seine data was significantly different among fall months when bryozoans were not collected with collections in September being lower than October and November (Fig. 5B)
• Collections for seine data with bryozoans versus without was only significantly different in November for SR and SD, since bryozoans were not collected in September or October (Figs. 5A and B)
• Species richness between collections with bryozoans versus without was significantly different for pooled trawl data from from in channel habitat, but not out channel habitat (Fig. 6A)
• Shannon diversity was also significantly different between collections with bryozoans and without for pooled trawl from in channel habitat, but not out channel habitat (Fig. 6B)

SUMMARY

• We documented various life stages of 158 invertebrate and 160 fish species from our collections, with 93 taxa in common among gear types
• Presence of bryozoan mats varied temporally and spatially across our spatial scale and the sampling period
• SR was significantly higher in trawl and seine samples during peak bryozoan occurrence
• SR and SD were, on average, higher when bryozoans were present than absent with 50% of all possible SR and SD comparisons being significantly higher
• Bryozoan volume -diversity patterns varied temporally and spatially across our spatial scale and the sampling period
• Bryozoans were not collected in September or October (Figs. 5A and B)

LITERATURE CITED

Pederson EJ, Comyns B, Stone JR, Reid F, Del GA (2003) Habitat use by early life-history stages of finfish and crustaceans along a changing estuarnal-continental shelf transect between natural and mixed-shoreline sites. West Coast Manage 2:234-249

ACKNOWLEDGMENTS

We would like to thank S. Ashworth, M. Buchanan, C. Butler, G. Crochet, A. Fogg, M. Lowe, T. Moncrieff, and J. Waters for their help with sampling. The Bureau of Ocean Energy Management, Environmental Studies Program (EM12AC00082) and Mississippi’s Intergovernmental Fisheries Assessment and Monitoring Program (#NA13NMF4070241) financially supported the study.